a2 United States Patent
Lueh et al.

US009465629B2

10) Patent No.: US 9,465,629 B2
45) Date of Patent: *Oct. 11, 2016

(54) DYNAMIC LINKING AND LOADING OF
POST-PROCESSING KERNELS

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Guei-Yuan Lueh, San Jose, CA (US);
Xiaoying He, Beijing (CN); Xuefeng
Zhang, Beijing (CN); Yuenian Yang,
Granite Bay, CA (US); Ping Liu,
Sunnyvale, CA (US); Hong Jiang, El
Dorado Hills, CA (US); Maxim
Lukyanov, Sunnyvale, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/476,285
(22) Filed: Sep. 3, 2014

(65) Prior Publication Data
US 2015/0143387 Al May 21, 2015

Related U.S. Application Data

(63) Continuation of application No. 11/758,437, filed on
Jun. 5, 2007, now Pat. No. 8,843,913.

(51) Int. CL
GOGF 9/445 (2006.01)
GOGF 9/45 (2006.01)
GOGF 9/44 (2006.01)
(52) US.CL
CPC oo GOGF 9/44521 (2013.01); GOGF 8/41

(2013.01); GO6F 9/4411 (2013.01)

(58) Field of Classification Search
CPC ... GOG6F 8/41; GOG6F 9/44521; GOGF 9/4411
USPC ottt 719/331
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,490,721 B1 12/2002 Gorshkov et al.

8,843,913 B2* 9/2014 Lueh GO6F 9/44521
717/162

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101320332 B 7/2012
DE 102008024521 B4 5/2011
(Continued)

OTHER PUBLICATIONS

Pharr et al. “GPU Gems 2 Japanese version—Programming Tech-
niques for High Performance Graphics and GPGPU”, Initial Ver-
sion, Dec. 25, 2005, Born Digital Inc., pp. 428-431, 483-485, ISBN
4-939007-95-2.

(Continued)

Primary Examiner — John Chavis
(74) Attorney, Agent, or Firm — Douglas J. Ryder; Ryder,
Lu, Mazzeo & Komieczny LL.C

(57) ABSTRACT

A computer system may generate a plurality of component
kernels, which are to be linked during the runtime. The
system may determine whether a combined kernel K is
present in response to receiving a first request to retrieve the
combined kernel K. The system may compose the combined
kernel K from the selected component kernels of the plu-
rality of component kernels during the runtime if the com-
bined kernel is not already present.

20 Claims, 4 Drawing Sheets

Applications 210

!

Programming interface 220

l

¥

Code Manager
254

!

Kernel
Composer 258

Driver 250

Code Patch
Generator
230

Graphics
> Hardware
280

Graphics Controller 145

US 9,465,629 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
2005/0138611 Al

2007/0006201 Al
2007/0041610 Al

6/2005 Inglis et al.
1/2007 Axnix et al.
2/2007 Kaneko et al.

FOREIGN PATENT DOCUMENTS

JP 02231604 A 9/1990
JP 05289858 A 11/1993
JP 2006338507 A 12/2006
JP 2008305398 A 12/2008
™ 480862 B 3/2002
™ 1252978 B 4/2006
WO 2006015107 A 2/2006

OTHER PUBLICATIONS

Office Action received for Japanese Patent Application No. 2008-
135731, mailed on Aug. 16, 2011, 8 pages of Office Action and 4
pages of English Translation.
Office Action received for Taiwan Patent Application No.
97118793, mailed on Oct. 1, 2012, 6 pages of Office Action and 7
pages of English Translation.

Eppstein, David “GPGPU” Wikipedia.org, May 20, 2007 http://en.
wikipedia.org/w/index php?title=GPGPU&oldid=132247297.
Yerrick, Damian “Overlay (programming)” Wikipedia.org, Mar. 11,
2007 http://en.wikipedia.org/w/index.php? Title=Overlay_ (pro-
gramming)&oldid=114399464.

“Library (computing)” Wikipedia.org, May 31, 2007 http://en.
wikipedia.org/w/index php?title=Library_ (computing)
&oldid=134830031.

Office Action received for German Patent Application No.
102008024521.6, mailed on May 19, 2010, 3 pages of Office
Action, 3 pages translation.

Office Action received for German Patent Application No.
102008024521.6, mailed on Aug. 17, 2009, 3 pages of Office
Action, 2 pages translation.

“The Role of Software Packaging in the Patch Management Pro-
cess”, Altiris, Mar. 15, 2006, 14 pages.

Office Action received for Chinese Patent Application No.
200810110381.3, mailed on Sep. 10, 2010, 3 pages of Office Action,
4 pages translation.

Tan, et al., “A Support Vector Machine with a Hybrid Kernel and
Minimal Vapnik-Chervonenkis Dimersion”, IEEE Transactions on
Knowledge and Data Engineering, vol. 16, No. 4, Apr. 2004, 11

pages.

* cited by examiner

US 9,465,629 B2

Sheet 1 of 4

Oct. 11, 2016

U.S. Patent

I[N

L 'OId

oSt 09t 08t
B0IAB(] BoIAa(] B0IAS(]
O/ O/l O/l
A ~ A
r r ,‘=
061

{(HOW anH Jegonuod O/l

A

k.

Alcwapyy

Q@T\,

|

-
pots
Q.
Q
L

- OFL HOoWD
37 gwr [
» JONOHUOT lemied IBHOIUOD
Aiousapy sodeID) g
3 S
0E7 esdyyD

|

o
o
<
3 |
>

Y

[T 10889304

US 9,465,629 B2

Sheet 2 of 4

Oct. 11, 2016

U.S. Patent

0%¢€

& Old

(_pa)

Pa,

1

¢ Old

ST iegjosuo) sowydelsy

JONIP
ay; o1 sayoed apoo Alejixne
ay} pue ssuBLIg BY) peo]

A

5oz OE7 18al(]
QIEMDIBH i > | 857 Jasodwo)
sofydesny CIEREE)Y
r
.Q..NM..N Y
- vGe
iojeiousg "l | eBeueyy apon
Uojed apon

Bl uny e

Bunjuy ayenpoe; jeys sayojed 8poo
Alelixne yim ssreulq sjesaushb
0} spuIey Jusuodwed apdwon)

h A

b4

072 ooruaui Buiweiboly

i
>

A
Y

072 sucneoyddy

b

US 9,465,629 B2

Sheet 3 of 4

Oct. 11, 2016

U.S. Patent

v "Old
(_puz)

Jeyusp anbiun
ue Ylim 3, 2Yoe)

SaA 3\
91537
E..s..A\\\\\ £DBNDDB) fﬁ,fx
ON »mcm_w E:m.\\ /

4\\ 08y

20eds JO UsliROO|e
Buigeoipul jeubis puooss e pusg

A

reubis is1y B Buini@oal
0} osuodsal Ul Y 10} ooeds 81E30|Y

A

M [BUISY PBUIGLIOD
e aleseuall 0} 1senbal puooes e pusg

V| sjesauab o1 nw‘;nwﬁ S|suIa
jusuodwos paloses aif BUILLISIB(]

F 3

:/ on
8] 47 ///

-7 s aords

»

S|OUIEY PALIGUIOD

sjouley peulguwos pabe oyl ajeied

e joUIDY /

e
o
SOA N wiepas <

\\».\\\\//ﬁl/ﬁ:

e jo abe sy} asealou]

Gy

N d N
cep J\ oty

ussasd v s -
$a4 &f{i Ew*\\m\\j\ ON

,ﬁ ozy

(M) |PuUiIsy pauIqUIOD
2 DABISI 0} Jsanbal 11y B BAIB00)Y

F 3

[

(yeis)

Ot¥

US 9,465,629 B2

Sheet 4 of 4

Oct. 11, 2016

U.S. Patent

065

085

04%

096

g "Old

(puz

=

s|oulay JuBuodwoD
pajoales ayi Ag pasn suoibai
1sys1Bal indino pue ndu ayy Ajjusp)

pasoduod St [BuUleY PaUIqUIcD By} jeul
$ejeoIpUl UoIym ‘[euBis piing ey} puss

A

049S

r 3

suoibal seys1b21 ndino
Y} 0} eiep IndIno ajum pue suoibsi
Josibal ndul syl woly elep indul peas
0} saleuiq ay) X 0} ssysjed apoo Alddy

3| 01 @oeds Jo uoneaoje Buneoipu
feubis puodss ay; Buineoal 0} ssuodsal

ui Y sjelsuab 01 paiinbai sjoulay
usuodwod syl O IBpPI0 BUl suIRRg

™\

A

111 2°

-~

X 104
aoeds s1eo0|ie 0} {eubls 1811 8y} pusg

\

aoeds
pejedojie ey} o} seueulq ey} Adod

f 3

0es

A

v Buiios
10§ paiinbai sdeds By} sUILIBB(

//

sjouia)y Juauodwion
P2)0B|es oy} Jo Saleulq Sy} SASLISY

A

0¢s

3 {BUISY PIUIGLUOD 3L}
ajesauab 0} 1sonbal 181l U} 9AIEaY

Hels)

0Ly

US 9,465,629 B2

1
DYNAMIC LINKING AND LOADING OF
POST-PROCESSING KERNELS

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to U.S. patent
application Ser. No. 11/758,437, filed Jun. 5, 2007.

BACKGROUND

A computer system generally comprises processing
devices, memory devices, interface devices, and input-out-
put (I/O) devices. While processing video signals, the com-
puter system may perform post-processing functions such as
film mode detection, de-interlacing, ProcAmp control
adjustment, video scaling, alpha bending, and color space
conversion. A plurality of independent kernels may be
developed each of which may comprise one or more of the
post-processing functions listed above. Each of the plurality
of kernels may occupy dedicated memory locations in the
memory to read input data and write results. However,
communicating data between different post-processing func-
tions via memory may consume higher processor cycles.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention described herein is illustrated by way of
example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale.
For example, the dimensions of some elements may be
exaggerated relative to other elements for clarity. Further,
where considered appropriate, reference labels have been
repeated among the figures to indicate corresponding or
analogous elements.

FIG. 1 illustrates an embodiment of a computer system.

FIG. 2 illustrates an embodiment of a graphics memory
controller hub (GMCH) of FIG. 1.

FIG. 3 illustrates an operation of an embodiment of a code
patch generator of FIG. 2.

FIG. 4 illustrates an operation of an embodiment of a code
manager of FIG. 2.

FIG. 5 illustrates an operation of an embodiment of a
kernel composer of FIG. 2.

DETAILED DESCRIPTION

The following description describes a system for dynamic
linking and loading of post-processing kernels. In the fol-
lowing description, numerous specific details such as logic
implementations, resource partitioning, or sharing, or dupli-
cation implementations, types and interrelationships of sys-
tem components, and logic partitioning or integration
choices are set forth in order to provide a more thorough
understanding of the present invention. It will be appreci-
ated, however, by one skilled in the art that the invention
may be practiced without such specific details. In other
instances, control structures, gate level circuits, and full
software instruction sequences have not been shown in
detail in order not to obscure the invention. Those of
ordinary skill in the art, with the included descriptions, will
be able to implement appropriate functionality without
undue experimentation.

References in the specification to “one embodiment”, “an
embodiment”, “an example embodiment”, indicate that the
embodiment described may include a particular feature,

10

15

20

25

30

35

40

45

50

55

60

65

2

structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to affect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

Embodiments of the invention may be implemented in
hardware, firmware, software, or any combination thereof.
Embodiments of the invention may also be implemented as
instructions stored on a machine-readable medium, which
may be read and executed by one or more processors. A
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computing device).

For example, a machine-readable medium may include
read only memory (ROM); random access memory (RAM);
magnetic disk storage media; optical storage media; flash
memory devices; electrical, optical, acoustical or other
forms of propagated signals (e.g., carrier waves, infrared
signals, and digital signals). Further, firmware, software,
routines, and instructions may be described herein as per-
forming certain actions. However, it should be appreciated
that such descriptions are merely for convenience and that
such actions in fact result from computing devices, proces-
sors, controllers, and other devices executing the firmware,
software, routines, and instructions.

An embodiment of a computer system 100 is illustrated in
FIG. 1. The computer system 100 may comprise a processor
110, a memory 120, a chipset 130, one or more 1/O devices
160, video graphics array (VGA) interface 170, and an
accelerated graphics port (AGP) interface 180.

The processor 110 may manage various resources and
processes within the computer system 100 and may execute
software instructions as well. The processor 110 may com-
prise, for example, one or more microprocessors from the
Pentium®, or Itanium® family of Intel® microprocessors.
The processor 110 may interface with the chipset 130 to
retrieve from the memory 120 and to store data into the
memory 120.

The memory 120 may store data and instructions and may
comprise one or more different types of memory devices
suich as DRAM (Dynamic Random Access Memory)
devices, SDRAM (Synchronous DRAM) devices, DDR
(Double Data Rate), or other volatile and non-volatile
memory devices used in computers.

The 1/0 device 160 may comprise devices such as a key
board, mouse, a network interface device, and such other
devices. The data units may be transferred between the
chipset 130 and the I/O devices 160 over buses comprising
peripheral component interconnect (PCI), serial advanced
technology attachment (SATA), low pin count (LPC), inte-
grated device electronics (IDE), and such other interconnect
technologies.

The chipset 130 may comprise one or more integrated
circuits or chips that couple the processor 110, the memory
120, the I/O devices 160, the VGA interface 170, and the
AGP interface 180. The chipset 130 may be one of the
Intel® families of chipsets. In one embodiment, the chipset
130 may comprise a memory controller hub 143, a graphics
and memory controller hub (GMCH) 145 and an /O con-
troller hub (ICH) 150. The ICH 150 may provide an inter-
face between /O devices 160 coupled to the ICH 150 and
the processor 110 and the memory 120. For example, the
ICH 150 may support, for example, hard disk drive, floppy

US 9,465,629 B2

3
drive, CD drives, modems, keyboards, printers, mouse,
endpoints, Ethernet and SCSI devices. The MCH 143 may
provide interface between the processor 110 and the memory
130.

In one embodiment, the GMCH 145 may process the
transactions and transfer the corresponding data between the
memory 120, the ICH 150, the processor 110, and the
devices coupled to the VGA interface 170 and the AGP
interface 180. In one embodiment, the GMCH 145 may
support dynamic linking and loading of post-processing
kernels. In one embodiment, the video post-processing ker-
nels may comprise an ordered sequence of two or more
post-processing functions such as film mode detection,
de-interlacing, ProcAmp control adjustment, video scaling,
alpha bending, and color space conversion.

For example, a first combined kernel K1 may comprise
post-processing functions such as film mode detection,
de-interlacing, and alpha bending in the same order. A
second combined kernel K2 may comprise post-processing
functions such as film-mode detection, de-interlacing, video
scaling, and color space conversion in the same order. In one
embodiment, the combined kernels K1 and K2 may be
composed before the kernel is about to be called by. As a
result, the dedicated space required to store each of the
statically composed kernels may be avoided. In one embodi-
ment, the post processing functions required to form a
combined kernel may be identified during the compilation
time and the post-processing functions may be linked
together dynamically to form a combined kernel during the
run time.

An embodiment of the GMCH 145 supporting dynamic
linking and loading of post-processing kernels is depicted in
FIG. 2. In one embodiment, the GMCH 145 may comprise
applications 210, a programming interface 220, a code patch
generator 230, a driver 250 and a graphics hardware 280. In
one embodiment, the graphics hardware 280 may interface
with driver 250 to perform the functions indicated by the
driver 250. In one embodiment, the graphics hardware 280
may comprise one of a family of Intel® Integrated Graphics
controller.

In one embodiment, the applications 210 may comprise
multimedia applications with which the user of the computer
system 100 may interact. In one embodiment, the program-
ming interface 220 may comprise one or more routines that
may be used by the applications 210 to interact with the
lower-level services provided by an underlying operating
system.

In one embodiment, the programming interface 220 may
provide a programming interface between the applications
210 and the code patch generator 230 and the driver 250. In
one embodiment, the programming interface 220 may pro-
vide a post-processing function request to the driver 250
based on the input values received from the applications
210. In one embodiment, the programming interface 220
may comprise Microsoft® DxVA (Direct X video accelera-
tion) programming interface.

In one embodiment, the code patch generator 230 may
compile each component kernel statically to a binary along
with an auxiliary code patch that may facilitate dynamic
linking during the run-time. The binary and the auxiliary
code patches may be loaded into the kernel composer 258 of
the driver 250 during the set-up time of the driver 250. In
one embodiment, the code patch generator 230 may specify
the I/O regions, which a first component kernel may use to
read and write data. However, the code patch generator 230
may not specify with which other component kernels the

25

35

40

45

50

55

60

4

first component kernel may be linked up with and such
linking of component kernels may happen during the run-
time.

The driver 250 may interface the upper layers such as
applications 210 to the graphics hardware 280. In one
embodiment, the driver 250 may comprise a code manager
254 and a code composer 258. In one embodiment, the
driver 250 may comprise one of a family of Intel® graphics
drivers.

In one embodiment, the code manager 254 may receive a
retrieve request from the programming interface 220 to
retrieve a specified combined kernel. The code manager 254
may determine if the specified combined kernel is present in
the database supported by the code manager 254. The code
manager 254 may send a signal to the programming inter-
face 220 indicating the presence of the specified combined
kernel if the specified kernel is present in the database. The
code manager 254 may send a request to the code composer
258 to compose the specified kernel if the specified com-
bined kernel is not present. In one embodiment, the code
manager 254 may also determine the component kernels
required to compose the specified combined kernel.

In one embodiment, the code manager 254 may allocate
space to store the newly composed specified combined
kernel in response to receiving a request to allocate space for
the newly composed specified combined kernel. In one
embodiment, the code manager 254 may store the newly
composed specified combined kernel and may also allocate
a unique identifier to the newly composed specified com-
bined kernel in response to receiving a signal, which indi-
cates that the specified combined kernel is composed. In one
embodiment, the code manager 254 may also manage the
space for storing the combined kernels by deleting the aged
combined kernels.

In one embodiment, the code composer 258 may receive
a signal to compose the specified combined kernel. The code
composer 258 may also receive the component kernels
required to compose the specified combined kernel. In one
embodiment, the code composer 258 may determine the
space that may be required to store the newly composed
specified combined kernel and may send a request to allo-
cate the space.

In one embodiment, the code composer 258 may compose
the combined kernel by determining the I/O register regions
specified for each component kernel. In one embodiment,
the code composer 258 may retrieve and copy the binary
files of the component kernels to the allocated space. The
code composer 258 may also apply associated code patches
to fix the binary files to read input data from the input
register regions and write output to the output register
regions. The code composer 258 may send a signal indicat-
ing that the specified combined kernel is composed.

An embodiment of an operation of the code patch gen-
erator 230 is illustrated in FIG. 3. In block 310, the code
patch generator 230 may compile component kernels to
generate binaries along with auxiliary code patches that
facilitate linking at run time. In one embodiment, the code
patch generator 230 may comprise a Gen4 assembler, which
may a use a ‘.declare’ syntax. In one embodiment, the Gen4
assembler use ‘.declare’ syntax to identify the instructions
that read data from the preceding kernel and the instructions
that write data to the successive kernel. In one embodiment,
‘.declare’ syntax for input and output regions may equal:

.declareINBase=r4,Elementsize=4, Type=d, Width(8),

Height(4)PP_IN

.declareOUTBase=r8,Elementsize=4, Type=d, Width(8),

Height(4)PP_OUT

US 9,465,629 B2

5

In one embodiment, the PP_IN and PP_OUT indicate that
‘.declare’ is used to access the data generated by the pre-
ceding kernel and the write data region to write the output
data, which may be read by the successive kernel. The
contents of PP_IN and PP_OUT may be set to a default
value until the runtime. The real values determined during
the runtime may be used to configure the contents of PP_IN
and PP_OUT. In one embodiment, the Gen4 assembler may
track ‘.declare’ with PP_IN and PP_OUT before generating
the auxiliary code patch.

In block 350, the code patch generator 230 may load the
binaries and the auxiliary code patches to the driver 250.

An embodiment of an operation of the code manager 254
is illustrated in FIG. 4. In block 410, the code manager 254
may receive a first request to retrieve a combined kernel K.
In block 420, the code manager 254 may check whether the
combined kernel K is present and control passes to block
425 if the combined kernel K is present and to block 430
otherwise.

In block 425, the code manager 254 may increase the age
of all the existing combined kernels. Such an approach may
allow identification of the combined kernels that are recently
used. In one embodiment, the combined kernels with lesser
age value are the recently used combined kernels.

In block 430, the code manager 254 may determine if the
kernel space is to be reclaimed and control passes to block
435 if the kernel space is to be reclaimed and to block 440
otherwise.

In block 435, the code manger 254 may delete the
combined kernels of age greater than a threshold age value.
In one embodiment, the code manager 254 may compare the
age of each combined kernel with a threshold age value to
determine whether the age of the combined kernel is greater
than the threshold age value.

In block 440, the code manager 254 may determine the
selected component kernels that are required to generate the
combined kernel K. In block 450, the code manager 254 may
send a second request to compose the combined kernel K
along with the selected component kernels. In one embodi-
ment, the code manager 254 may send the second request to
the code composer 258 in the form of a bool array. For
example, the bool array may equal bool component_kernels
[list of component kernels]. The component kernels may be
selected if the component kernel boolean values are true.

In block 460, the code manager 254 may allocate space to
store the combined kernel K in response to receiving a first
signal from the code composer 258. In block 470, the code
manager 254 may send a second signal indicating that the
space for storing the combined kernel K is allocated.

In block 480, the code manager 254 may check if a third
signal that indicates whether the combined kernel is com-
posed is received and control passes to block 490 if the
combined kernel K is composed and to block 480 otherwise.

In block 490, the code manager 254 may cache or store
the combined kernel K with a unique identifier assigned to
the combined kernel K.

An embodiment of an operation of the code composer 258
is illustrated in FIG. 5. In block 510, the code composer 258
may receive the first request to generate the combined kernel
K. In block 520, the code composer 258 may determine the
space required to store the combined kernel K.

In block 530, the code composer 258 may send the first
signal to allocate space for the combined kernel K. In block
540, the code composer 258 may determine the order of the
selected component kernels to generate the combined kernel

10

15

20

25

30

40

45

50

55

60

6

K after receiving the second signal, which indicates that the
space required for storing the combined kernel K is allo-
cated.

In block 550, the code composer 258 may determine the
input and output register regions used by the selected
component kernels. In block 560, the code composer 258
may retrieve the binaries of the selected component kernels.

In block 570, the code composer 258 may copy the
binaries to the allocated space. In block 580, the code
composer 258 may apply the code patches to fix the binaries
to read the input data from the input register region and write
the output data to the output register region.

In block 590, the code composer 258 may send a third
signal, which indicates that the combined kernel K is com-
posed. Such a signal may be sent to the code manager 254.

Certain features of the invention have been described with
reference to example embodiments. However, the descrip-
tion is not intended to be construed in a limiting sense.
Various modifications of the example embodiments, as well
as other embodiments of the invention, which are apparent
to persons skilled in the art to which the invention pertains
are deemed to lie within the spirit and scope of the invention.

What is claimed is:

1. A method comprising:

generating a plurality of component kernels in a code

patch generator, wherein the plurality of component
kernels are to be linked during runtime,

determining whether a combined kernel is present in a

code manager, and

creating the combined kernel in a code composer, wherein

the combined kernel is created from selected compo-
nent kernels of the plurality of component kernels if the
combined kernel is not present in the code manager.

2. The method of claim 1, wherein the generating the
plurality of component kernels includes:

compiling the plurality of component kernels to generate

binaries with code patches that read data from a pre-
ceding kernel and write data into a successive kernel at
runtime, and

loading the binaries and the code patches into a driver.

3. The method of claim 2, wherein the creating the
combined kernel includes:

determining a memory required for storing the combined

kernel,

identifying input and output register regions used by the

selected component kernels of the plurality of compo-
nent kernels, and

applying the code patches to assign the binaries to read

data from the input register regions and to write data to
the output register regions.

4. The method of claim 3, wherein the determining the
memory for storing the combined kernel includes determin-
ing an order of the component kernels required to generate
the combined kernel.

5. The method of claim 4, wherein the creating the
combined kernel further includes:

allocating the memory required to store the combined

kernel, and

storing the combined kernel and a unique identifier asso-

ciated with the combined kernel after the combined
kernel is created by the code composer.

6. The method of claim 3, wherein the creating the
combined kernel further includes:

retrieving the binaries of the component kernels,

copying the binaries to the memory, and

US 9,465,629 B2

7

indicating that the combined kernel is composed after
applying the code patches to assign the binaries to read
data from the input register regions and to write data to
the output register regions.

7. The method of claim 1, wherein the determining
whether the combined kernel is present further includes
transmitting a request to the code composer to generate the
combined kernel if the combined kernel is not already
present.

8. A non-transitory machine readable storage medium
comprising:

a code patch generator to generate a plurality of compo-
nent kernels, wherein the plurality of component ker-
nels are to be linked during runtime,

a code manager coupled to the code patch generator,
wherein the code manager is to determine whether a
combined kernel is present, and

a code composer coupled to the code manager to create
the combined kernel, wherein the combined kernel is
created from selected component kernels of the plural-
ity of component kernels if the combined kernel is not
present in the code manager.

9. The non-transitory machine readable storage medium

of claim 8, wherein the code patch generator is further to:
compile the plurality of component kernels to generate
binaries with code patches that read data from a pre-
ceding kernel and write data into a successive kernel at
runtime, and

load the binaries and the code patches into a driver.

10. The non-transitory machine readable storage medium
of claim 9, wherein the code composer is further to:

determine a memory required for storing the combined
kernel,

identify input and output register regions used by the
selected component kernels of the plurality of compo-
nent kernels, and

apply the code patches to assign the binaries to read data
from the input register regions and to write data to the
output register regions.

11. The non-transitory machine readable storage medium

of claim 10, wherein the code composer is further to:
transmit a signal to the code manager, and

determine an order of the component kernels required to
generate the combined kernel.

12. The non-transitory machine readable storage medium

of claim 11, wherein the code manager is further to:
allocate the memory for storing the combined kernel after
receiving the signal transmitted by the code composer,
and

store the combined kernel and a unique identifier associ-
ated with the combined kernel after the combined
kernel is created by the code composer.

13. The non-transitory machine readable storage medium

of claim 10, wherein the code composer is further to:
retrieve the binaries of the component kernels,

copy the binaries to the memory, and

indicate that the combined kernel is composed after
applying the code patches to assign the binaries to read
data from the input register regions and to write data to
the output register regions.

10

15

20

25

30

35

40

45

50

8

14. The non-transitory machine readable storage medium
of claim 8, wherein the code manager is further to transmit
a request to the code composer to generate the combined
kernel if the combined kernel is not already present.

15. A non-transitory machine readable storage medium
storing a plurality of instructions that in response to being
executed by a computing device result in the computing
device:

generating a plurality of component kernels in a code

patch generator, wherein the plurality of component
kernels are to be linked during runtime,

determining whether a combined kernel is present in a

code manager, and

creating the combined kernel in a code composer, wherein

the combined kernel is created from selected compo-
nent kernels of the plurality of component kernels if the
combined kernel is not present in the code manager.

16. The non-transitory machine readable storage medium
of claim 15, wherein the instructions in response to being
executed further result in the computing device:

compiling the plurality of component kernels to generate

binaries with code patches that read data from a pre-
ceding kernel and write data into a successive kernel at
runtime, and

loading the binaries and the code patches into a driver.

17. The non-transitory machine readable storage medium
of claim 16, wherein the instructions in response to being
executed further result in the computing device:

determining a memory required for storing the combined

kernel,

identifying input and output register regions used by the

selected component kernels of the plurality of compo-
nent kernels, and

applying the code patches to assign the binaries to read

data from the input register regions and to write data to
the output register regions.

18. The non-transitory machine readable storage medium
of claim 17, wherein the instructions in response to being
executed further result in the computing device determining
an order of the component kernels required to generate the
combined kernel.

19. The non-transitory machine readable storage medium
of claim 18, wherein the instructions in response to being
executed further result in the computing device:

allocating the memory required to store the combined

kernel, and

storing the combined kernel and an unique identifier

associated with the combined kernel] after the combined
kernel is created by the code composer.

20. The non-transitory machine readable storage medium
of claim 17, wherein the instructions in response to being
executed further result in the computing device:

retrieving the binaries of the component kernels,

copying the binaries to the memory, and

indicating that the combined kernel is composed after

applying the code patches to assign the binaries to read
data from the input register regions and to write data to
the output register regions.

#* #* #* #* #*

